Search results for "cross validation"

showing 9 items of 9 documents

Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples

2021

Abstract Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, often difficult to collect. We designed an operative pipeline for model training to exploit data already available to the scientific community. The aim of this work was to explore the capability of radiomic features in predicting tumor histology and stage in patients with non-small cell lung cancer (NSCLC). We analyzed the radiotherapy planning thoracic CT scans of a proprietary sample of 47 subjects (L-RT) and integrated this dataset with a publicly available set of 130 patients from the MAASTRO NSCLC collection (Lung1). We implemented intra- and inter-sample cross-valida…

Lung NeoplasmsComputer scienceBiophysicsGeneral Physics and AstronomySample (statistics)Cross validationMachine learningcomputer.software_genreCross validation; Machine learning; Non-small cell lung cancer; Radiomics; Humans; Lung; Machine Learning; Neoplasm Staging; Carcinoma Non-Small-Cell Lung; Lung NeoplasmsCross-validationSet (abstract data type)Machine LearningNon-small cell lung cancerCarcinoma Non-Small-Cell LungmedicineHumansRadiology Nuclear Medicine and imagingStage (cooking)Lung cancerNon-Small-Cell LungLungNeoplasm StagingSmall dataRadiomicsbusiness.industryCarcinomaGeneral Medicinemedicine.diseaseRandom forestSupport vector machineArtificial intelligencebusinesscomputer
researchProduct

Superposing significant interaction rules (SSIR) method: a simple procedure for rapid ranking of congeneric compounds

2020

The Superposing Significant Interaction Rules (SSIR) method is revised and implemented. The method is a simple combinatorial procedure, which deals with in situ generated rules among a dichotomized congeneric molecular family, selecting the most probabilistically relevant ones. The mere counting of the number of relevant rules attached to new compounds generates a molecular ranking useful for database filtering, refinement and prediction. The algorithm only needs for a symbolic molecular representation and this allows for mining the database in a confidential manner. Third parties will not know the real compounds that are on the way to be worked out. The procedure is tested for a complete s…

Simple (abstract algebra)Computer sciencebusiness.industryQuímica combinatòriaPattern recognitionCombinatorial chemistrySSIR method; Congener series; Ranking; SAR; Balanced Leave-two-out cross validation (BL2O)General ChemistryArtificial intelligenceQuímicabusinessRanking (information retrieval)
researchProduct

Prediction of Disease–lncRNA Associations via Machine Learning and Big Data Approaches

2021

This chapter introduces long non-coding RNAs and their role in the occurrence and progress of diseases. The discovery of novel lncRNA-disease associations may provide valuable input to the understanding of disease mechanisms at the lncRNA level, as well as to the detection of biomarkers for disease diagnosis, treatment, prognosis, and prevention. Unfortunately, due to costs and time complexity, the number of possible disease-related lncRNAs verified by traditional biological experiments is very limited. Computational approaches for the prediction of potential disease-lncRNA associations can effectively decrease the time and cost of biological experiments. We first review the main computatio…

business.industryComputer scienceBig Data Technologies Biological Processes Computational Approaches Disease–lncRNA Associations Non-Coding RNA Hypergeometric distribution Leave One Out Cross Validation Long non-coding RNA Master-Slave Architecture Micro-RNA.Big dataArtificial intelligenceDiseasebusinessMachine learningcomputer.software_genrecomputer
researchProduct

HEp-2 Cell Classification with heterogeneous classes-processes based on K-Nearest Neighbours

2014

We present a scheme for the feature extraction and classification of the fluorescence staining patterns of HEp-2 cells in IIF images. We propose a set of complementary processes specific to each class of patterns to search. Our set of processes consists of preprocessing,features extraction and classification. The choice of methods, features and parameters was performed automatically, using the Mean Class Accuracy (MCA) as a figure of merit. We extract a large number (108) of features able to fully characterize the staining pattern of HEp-2 cells. We propose a classification approach based on two steps: the first step follows the one-against-all(OAA) scheme, while the second step follows the…

IIF images K–Nearest-Neighbors (K-NN) multi-class classification one-against-all classification leave-one-out cross validation.Settore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

High Performance Liquid Chromatografy-Mass Spectrometry based chemometric characterization of olive oils

2005

In this study the effective discrimination of extra virgin olive oils is described using HPLC-MS, combined with chemometric evaluation. The presented method is simple since the diluted oil sample is directly injected into the system, without any preliminary chemical derivatization or purification step. Separation of diacylglycerols, triacylglycerols and sterols occurs within 20 min and is achieved using an octadecyl-silica column. Detection is performed by positive APCI mass spectrometry which provided sensitivity to detect over 50 compounds in the sample. After extraction of data, stepwise discriminant function analysis is used to select the variables with the highest discriminative power.…

Linear discriminant analysiAnalytical chemistryAtmospheric-pressure chemical ionizationCross validationMass spectrometrySensitivity and SpecificityBiochemistryHigh-performance liquid chromatographyMass SpectrometryAnalytical ChemistryDiglyceridesChemometricschemistry.chemical_compoundLiquid chromatography–mass spectrometryPlant OilsDerivatizationChromatography High Pressure LiquidTriglyceridesChromatographyOrganic ChemistryOil cultivarDiscriminant AnalysisPhytosterolsReproducibility of ResultsGeneral MedicineLinear discriminant analysisHPLC–MSVegetable oilchemistryOlive oil
researchProduct

Fishery-dependent and -independent data lead to consistent estimations of essential habitats

2016

AbstractSpecies mapping is an essential tool for conservation programmes as it provides clear pictures of the distribution of marine resources. However, in fishery ecology, the amount of objective scientific information is limited and data may not always be directly comparable. Information about the distribution of marine species can be derived from two main sources: fishery-independent data (scientific surveys at sea) and fishery-dependent data (collection and sampling by observers in commercial vessels). The aim of this paper is to compare whether these two different sources produce similar, complementary, or different results. We compare them in the specific context of identifying the Es…

0106 biological scienceshttp://aims.fao.org/aos/agrovoc/c_28840Biodiversité et Ecologiehabitatmodélisation spatialehttp://aims.fao.org/aos/agrovoc/c_38371OceanographyGaleus melastomus01 natural sciencesRessource halieutiquehttp://aims.fao.org/aos/agrovoc/c_38127Scyliorhinus caniculamodèle hiérarchiqueSpatial statisticsEcologymodèle de distributionSampling (statistics)Contrast (statistics)Cross-validationModélisation et simulationGeographyHabitatGestion des pêchesModeling and Simulationhttp://aims.fao.org/aos/agrovoc/c_10566http://aims.fao.org/aos/agrovoc/c_3456http://aims.fao.org/aos/agrovoc/c_38117survey designMarine conservationSpecies Distribution ModelsEcology (disciplines)Bayesian probabilityEtmopterus spinaxenquête statistiqueDonnée sur les pêchesmodèle spatiotemporelSede Central IEOContext (language use)Aquatic ScienceDistribution des populationsBayesian hierarchical models010603 evolutionary biologyhttp://aims.fao.org/aos/agrovoc/c_24026elasmobranchsBiodiversity and Ecologyélasmobrancheétude comparativeBayesian hierarchical models;Cross-validation;Species Distribution Models;Spatial statistics;INLA;elasmobranchs ; survey designINLA14. Life underwaterspecies distribution modelsEcology Evolution Behavior and Systematicshttp://aims.fao.org/aos/agrovoc/c_6113collecte des donnéesÉcologie marinehttp://aims.fao.org/aos/agrovoc/c_29788http://aims.fao.org/aos/agrovoc/c_4609010604 marine biology & hydrobiologyGestion et conservation des pêchescross validation[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationmodèle bayésienFisheryM01 - Pêche et aquaculture - Considérations généraleshttp://aims.fao.org/aos/agrovoc/c_2a75d27eThéorie bayésienneM40 - Écologie aquatiqueSpatial ecologyhttp://aims.fao.org/aos/agrovoc/c_2942[SDE.BE]Environmental Sciences/Biodiversity and Ecologyvalidation croiséeElasmobranchii
researchProduct

KERNEL ESTIMATION OF THE TRANSITION DENSITY IN BIFURCATING MARKOV CHAINS

2023

We study the kernel estimator of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that this estimator is consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods are based on the so-called two bandwidths approach.

cross validation methodKernel estimatorrule of thumb type methodasymptotic normalitybinary trees[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]bifurcating Markov chains[STAT] Statistics [stat]
researchProduct

A rapid method for the differentiation of yeast cells grown under carbon and nitrogen-limited conditions by means of partial least squares discrimina…

2012

This paper shows the ease of application and usefulness of mid-IR measurements for the investigation of orthogonal cell states on the example of the analysis of Pichia pastoris cells. A rapid method for the discrimination of entire yeast cells grown under carbon and nitrogen-limited conditions based on the direct acquisition of mid-IR spectra and partial least squares discriminant analysis (PLS-DA) is described. The obtained PLS-DA model was extensively validated employing two different validation strategies: (i) statistical validation employing a method based on permutation testing and (ii) external validation splitting the available data into two independent sub-sets. The Variable Importa…

Time FactorsChemistry(all)Spectrophotometry InfraredNitrogenAnalytical chemistryInfrared spectroscopyPichiaArticleAnalytical ChemistryPichia pastorisPichia pastorisInfrared (IR) micro-spectroscopyPartial least squares regressionProcess controlPartial least squares-discriminant analysis (PLS-DA)Least-Squares AnalysisProjection (set theory)Cell ProliferationPrincipal Component AnalysisbiologyChemistryDiscriminant AnalysisReproducibility of ResultsLinear discriminant analysisbiology.organism_classificationDouble cross validation (2CV)YeastCarbonYeastCulture MediaPermutation testingPrincipal component analysisFeasibility StudiesBiological systemTalanta
researchProduct

Data from: Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models

2018

Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypoth…

medicine and health careage-structured modelSpatial structuretime-seriesk-fold cross validationLife SciencesMedicinestate-space modelsBayesian
researchProduct